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Low-Loss Optical Branching Waveguides

Consisting of Anisotropic Materials
Shinnosuke Sawa, Member, IEEE, Masahiro Geshiro, Member, IEEE, and Fumikazu Takeda

Abstract —LOW-1OSS branching waveguides of the mode-con-

version type consisting of anisotropic materials are proposed

and their basic wave-guiding characteristics are studied by
means of coupled-mode theory. Two mode-conversion sections

are introduced on both input and output sides of a conventional
symmetric branching waveguide. Each arm of the branching
waveguides is assumed to be a single-mode slab waveguide

except for the tapered section. A coupled-mode system of equa-
tions describing mode-conversion phenomena with respect to
the TM mode in the branching waveguides is derived from the
field expansion in terms of local normal modes. A
Runge-Kutta-Gill method is used to numerically solve the

coupled-mode equations. It is found that the branching wave-

guides proposed here suffer mode-conversion losses to a much
lesser extent than conventional branching waveguides.

I. INTRODUCTION

I N optical network systems, lightwave modulators and

splitters/combiners will play important roles. Branch-

ing waveguides consisting of both isotropic and anisotropic

materials have been key elements for these guided wave

devices [1]–[4]. Their losses must be as low and their sizes

as small as possible, and they must also be simple to

fabricate., Some attempts have been made to reduce

mode-conversion losses in isotropic branching waveguides

[5]-[8]. To the authors’ knowledge, however, the same

subject for anisotropic cases has not been fully discussed

yet, in spite of the great significance from the device

design viewpoint [9], [10].

In this paper we propose low-loss branching wave-

guides of the mode-conversion type consisting of aniso-

tropic materials. Each arm, except for the tapered sec-

tion, is assumed to be a single-mode slab waveguide

composed of uniaxial crystalline materials. It is also as-

sumed that the optical axes, in both core and cladding,

are parallel to each other and lie in the plane defined by

the propagation direction and the normal of the wave-
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guide surface. Two mode-conversion sections are intro-

duced on the input and output sides of the separating

section in order to suppress unnecessary mode conver-

sion. Basic wave-guiding properties in the proposed struc-

tures are studied by means of coupled-mode theory. We

concentrate our discussion on the mode-conversion phe-

nomena among TM modes since it is the TM mode, in

this case, that shows interesting behavior which cannot be

observed in the isotropic case [11], [12]. A coupled-mode

system of equations describing the mode-conversion phe-

nomena is derived from the field expansion in terms of

local normal modes [13, pp. 106–11 1]. Numerical results,

obtained by the Runge–Kutta–Gill method, show that the

branching waveguides proposed in the present paper in-

cur mode-conversion losses that are much less than those

of conventional branching waveguides.

II. ANALYTICAL METHOD

A conventional symmetric branching waveguide com-

posed of a uniaxial crystalline material is shown together

with the Cartesian coordinate system used for the analysis

in Fig. 1. The whole structure is made up of two subsec-

tions along the z axis: a tapered section succeeding a

single slab waveguide and a separating section followed

by two parallel slab waveguides with a separation of h.

The width of the waveguide is d everywhere except for

the tapered section. The slope of both the tapered and

the separating section is 0; ●, and Ed are dielectric

tensors in the core and the cladding, respectively. The

functions ~(z) and h(z) describe the geometrical shape

of the core boundaries.

There exist two types of local normal modes. One is

that supported by a three-layered slab waveguide in the

tapered section, and the other is that guided by a five-

layered slab waveguide in the separating section. The

waveguide structures supporting these local normal modes

are shown in Fig. 2. Suppose optical axes, in both core

and cladding, lie in the x – z plane and are parallel to

each other. In the waveguide coordinate system, the di-

electric tensor is expressed as [11]

0018-9480 /91/0700-1140$01 .00 01991 IEEE
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Fig. 1. Conventional branching waveguide.
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Fig. 2. Waveguides supporting local normal modes: (a) three-layered
slab waveguide; (b) five-layered slab waveguide.

where

●pxx= epl COS2a + ●P3sin2 a

epxz = Epzx = (EP3– ep,)sinacosa

E
Pzz

= Epl sin2 a + CP3cos2 a

~PYY
= Epl. (2)

In the above equations, eP1 and ●ps are the PrinciPal

dielectric constants and a is the angle between the z axis

and the optical axis. The subscript p, signifying the re-

gion, represents r (core) or d (cladding).

Marcuse [11] tells us that the propagation characteris-

tics of the eigenmodes in the waveguides shown in Fig. 2

do not change significantly through a slight variation in

the oblique angle a. For the sake of brevity in the analysis

we have chosen these waveguides for the local normal

modes. Therefore, the present analysis can be satisfacto-

rily applied to the case where the slopes of the functions

f(z) and Mz) are fairly graduaI. For a more precise
analysis, we should choose a different hypothetical wave-

guide, one in which the effects of sloping core boundaries

could be reflected properly.
We are now treating a weakly guiding structure with a

gentle taper and a small separation angle in which cou-

pling between the modes with positive real propagation

constants is significant. Thus the coupled-mode equations

with respect to the local normal modes can be expressed

as [13, pp. 106–111]

da](z)
— .

dz [
~ Cj,a,(z) exp j~z{pj(z’) - P,(z’)} dz’

1i(#j)

,~
J cjr(Z,P)ur(Z,P)
o

[ 1
“exp j~z{~~(z’) –@,(z’, p)}dz’ dp

o

‘ar~’”)=~CrL(z, p)ai(z)
i

[/
. exp j :{ P.(z’,P) - %(z’)}dz’ 1

where

Tp = ‘=pxx~pzz – ●;xz

,=(2(:+,,).

(3)

(4)

(5)

(6)

In the above equations, a.(z) and ~.(z), where n = i or j,

are the complex amplitude coefficient and propagation

constant of the guided mode labeled n; a,( Z,P) and
@,(z,P) are those of the radiation mode with the trans-
verse propagation constant p; and CJ,(Z), cJ.(z, P), and
c,,(z, p) are the coupling coefficients. The parameters EO

and kO are the dielectric constant and the wavenumber in

a vacuum, respectively. As mentioned above, (3) and (4)

are restricted to coupling between the modes with posi-

tive real propagation constants, excluding evanescent

modes and backward propagating modes. Coupling be-

tween radiation modes is also neglected in the derivation.

The coupling coefficient between the modes labeled m
and n is given by [13]

where Em and E. are electric field vectors of the TM

modes, P is the power carried by the mode, o is the
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radian frequency, and the asterisk indicates the complex

conjugate. The coupled modes in (7) maybe either guided

modes or radiation modes. Following the mathematical

procedures in [13, pp. 116–121] under the condition that

the slopes of the tapered and separating sections are very

gradual, we obtain

w tan Ot
Cmn=

4p(Bm – B.)
([ (F %.7 ‘%z)]x=f(=)

+[F(Epx@qJ]x=-f(z) )() 8

in the tapered section and

w tan tl~
Cmn=

4~(13.* – B.)

([ (o F Epx@qz)]. =f(.)+ [F(%~E. z)]x=-~(z)

-[ F(-EpX,EqJ]X=,,(Z, -[ WPXWIX=-M=) }

(9)

in the separating section, where

q’%. ? qlz )

-[

c
—

~(~,xx - EJJZLE.. + (E,., - c.zz)WLEn,

+ E,xz log
1

%( %x-%.+ %,%) . (lo)

In the above equations, /3, and 05 are the slopes of the

tapered and separating sections, respectively, and Epx

and EqZ are the x and z components of Ep and Eq,

where p = m or n and q = m or n. The field components

should be evaluated right at the core boundaries inside

the core. Readers can refer to [11] for functional expres-

sions of guided modes in a three-layered slab waveguide.

Those of the other modes will not be given here because

the derivation for them, while quite straightforward, is

uninteresting.

111. PRACTICAL DESIGNS FOR Low-Loss OPTICAL

BRANCHING WAVEGUIDES

Two practical structures have been proposed to reduce

mode-conversion losses for branching waveguides com-

posed of isotropic materials [5]–[7]. Here we apply these

design considerations to those composed of anisotropic

materials, and estimate mode-conversion losses in the
branching waveguides. The coupled mode equations, (3)

and (4), are solved by means of the Runge–Kutta–Gill

method where the continuum of radiation modes with

real propagation constants is divided uniformly into 120

discrete modes in the p space and the step length in the z

direction is assumed to be A z = 0.25d in the actual com-

putations.

A. Theory of Mode Transducer [5]

First let us summarize the theory of the mode trans-
ducer for two-mode transmission systems. We consider

the cascade iunction of two coudin~ regions A and B with

REGION A REGION B

Fig. 3. Cascade junction of coupling regions. With an optimal design
of A and B, an incident mode is converted to a designated normal mode

in B through the propagation in A.

different types of local normal modes as illustrated in Fig.

3. Both input and output waveguides support two modes

without any ‘coupling between them. The normal modes in

region B are assumed to be the same as those in the

output waveguide. It is also assumed that reflected waves

are negligible at any place. The coupled-mode equation in

region A is given by

:(%;)=’(%22)(:$;)’11)
where an(z) and /3a~ are the amplitude coefficient and

propagation constant of the normal mode labeled m, and

C. is the coupling coefficient. With the incident condition

[al(0), aJO)] at z = O, the solution of (11) at z = LI is

obtained as

where

On the other hand, the k th normal mode in region B can

be expressed as

bk(z) = ebkap{jczbk(z – LI)} (14)

with k = 1 or 2. Here ebk and ~bk are the k th eigenvector
and eigenvalue of the matrix

(15)
..-.
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where p~~ is the propagation constant of the normal

mode labeled m, and C~ is the coupling coefficient. We

concentrate our discussion on a problem of power trans-

fer to the bi mode from the al mode. The first eigenvalue

of (15) is given by

(16)

with

‘)’b = (~bl + &2)/2

rb=-

Ab = l~bl – @b21/2 (17)

and the associated eigenvector is expressed as

6?b~=[l,(rb-Ab)/cb]. (18)

where 6 = 0.0201. In addition, we define the normalized

frequency as

J“= kodi%(%xx – %.)/60% . (26)

With V chosen equal to r except for the tapered section,

only the lowest-order guided TMO mode, the incident

mode on the branching waveguide, can be supported. At

the output end of the tapered section, the waveguide

width is 2 d. This means that the guided TM I mode can

be excited haltivay in the tapered section. Consequently

the guided TMO mode, guided TMI, even TM radiation,

and odd TM radiation modes exist in the structure as the

coupled modes. Fig. 4 shows the change of power of the

coupled modes as a function of oblique angle. The ordi-

nates represent the coupled mode power:

(plaJLf)12 for guided modes

For the complete transfer of power, we should require PCM=

‘~[;il=(g~~~)=al(L’)( (r,_~,),C,), (19) ‘p~~’a7(L’P’’2d~ forradiationmo~),

Substituting (12) and (13) into (19) with the incident
which is normalized by the power of the incident mode. It

can be seen from Fig. 4 that mode conversion is strongest
condition a2(0) = O and equating both real and lmagma~ be~een the incident mode and the even TM radiation

. .

parts of the resultant equation, we get modes, and reaches its maximum value at a = O“. ‘The

La=(im-l)/(b (20)
characteristics of mode conversion to the odd modes, the

guided TM I and odd TM radiation modes, are illustrated

La=(2N+l)T/(2Aa~~),
in Fig. 4(c). This type of coupling, which never occurs in

N=0,1,2,. ”” the isotropic case, is caused by the nondiagonal elements

(21) of the dielectric tensor. The coupled power of the guided

TM I mode caused by mode conversion reaches its peak at

where a = 45°, where both ●PXz and CPZX in (2) become nmxi-

mum.
(P= lCpl\Ap, p= aorb. (22) Taking these results into account, we concentrate our

Structural parameters in the coupling regions A and B

can be determined by applying (20) and (21). In the case

of Ja <<1 and (~ <<1 with N = O, (20) and (21) reciuce to

La=:
2Aa

(23)

(24)

B. Design Method I

Before we discuss low-loss branching waveguicles, we

analyze mode-conversion phenomena in oblique propaga-

tion in the conventional branching waveguide shown in

Fig. 1. In the numerical calculations, it is assumed that

L~ = 78.645d, that 6 = 1“, and that the waveguide is com-
posed of LiNbO~ with the refractive indices fi /co =

2.272 and ~~ = 2.187. The elements of the dielec-

tric tensors in both the core and the cladding region

satisfy the following relation:

Erij= ~~ij(l+ 8), iorj=x, y,orz (25)

discussion in the following on the case of a = 0°, where

mode-conversion losses are most significant. The first

low-loss branching waveguide (structure I) is designed as

shown in Fig. 5. This is made up of four subsections: a

tapered section of slope 19tsucceeding a single slab wave-

guide; a prong waveguide of slope t9~l as the first mode

converter; a main separating section of slope 6~2; and a

second mode converter composed of two slab waveguides

of slope tlbq. Two parallel slab waveguides with a separa-

tion of h follow the last subsection. The width of wave-

guide is assumed to be d everywhere except for the

tapered section. L,, L~l, and Lb~ are the lengths of

subsections I, H, and IV, respectively, and Lf is the

overall length of the branching waveguide. Subsections II

and IV correspond to coupling region A in Fig. 3, and

subsection III corresponds to coupling region B. The

tapered section, subsection I, has a constant slope in the

present paper because the radiation losses at the tapered

section are much less than those in a prong waveguide.

We apply the above-mentioned theory here to the guided
TMO mode and the radiation mode having the largest

coupling coefficient. Considering that the coupling coeffi-

cients are almost proportional to the slope of the wave-
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Fig. 5. Branching waveguide of structure I.

guide, the parameters of the structure

determined to be [6], [7]

‘z-

L~l =
Po(~t) - &(&>P)

7i-

‘bs = @o(L~)- &(L~~~)

d L~l + Lb3

“=d+h Lf - 2

I q = Obl= 0b3= 0b2/2.

u

(X1O-4)
2
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Fig. 4. Variation inthecoupled-mode power caused by mode conver-

sion in the conventional branching waveguide as a function of oblique
angle, where /3=1° and L~ =78.645d.

in Fig. 5 are

(28)

Intheabove equations, ~o(L,) and f?o(Lf) arethe propa-

gation constants of the guided TMO mode at z = L, and

Lf, and @,(L,, p) and @r(Lf, p) are the constants of the
even TM radiation mode having the maximum coupling

coefficient with the former guided mode at z = L~ and

L~, respectively.

Power losses caused by mode conversion to the radia-

tion modes are illustrated in Fig. 6, where the abscissas

are the total length L~ of the branching waveguide and

the ordinates the normalized power of the radiation

modes. The solid lines indicate the radiation losses in

structure I. The dotted lines indicate those in the conven-

tional branching waveguide which has the same length

and the same branch separation as structure I. The slope

of the conventional branching waveguide is given by

()h+d
t9= tan-1 —

2Lf “
(29)

The half span of the branch separation is assumed as

h/2 = 0.625d in Fig. 6(a) and h/2= 1.25d in Fig. 6(b). It

is found from the figure that, in most regions of L~, the

characteristics of the mode-conversion losses in structure

I are superior to those in the conventional branching

waveguide. It is expected that the mode-conversion losses

can be drastically reduced by utilizing the branching

waveguide proposed here.
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Fig. 6. Variation in the radiation losses in the branching waveguides
shown in Figs. 1 and 5 as a function of the total length Lj of the
structure, where (a) h/2 = 0.625d and (b) h/2 = 1.25d.

C. Design Method ZI

The second branching waveguide (structure II) is shown

in Fig. 7. The whole structure is made up of three

subsections, that is, a tapered section of slope (ill succeed-

ing a single slab waveguide; a separating section of slope

6Z; and two slab waveguides of slope Oq followed by two

parallel slab waveguides with a separation of h. 1.1, L2,

and L3 are the lengths of subsections I, II, and III,

respectively. In this case, subsections I and III correspond

to regions A and B in Fig. 3, respectively. By means of

(23) and (24) the above parameters are determined to be
n-

L1 =
/%(0) - &(%P)

T

‘3= &( L~)- &( L~, P)

()

d
131= tan-l —

2LI

----
-“ I I

. i
I I

I
11 ‘i I

+L1’- L2 -L3~
I
K Lf ~;

Fig. 7. Branching waveguide of structure II.

where 8.(0) and Bo(Lf) are the propagation constants of

the guided TMO mode at z = O and L~, and ~r(O, p) and

p,(Lf, p) are the constants of the even TM radiation
mode having the maximum coupling coefficient with the

former guided mode at z = O and L~, respectively. Since

the coupling coefficients between the guided TMO mode

and the even TM radiation modes are in proportion to

the slope of the waveguide, we define the following rela-

tion between the slopes as [6]

e3= 62/2 =el/2iw (31)

where the parameter M is a positive constant called the

angle ratio that is introduced to optimize the mode trans-

ducer. According to the numerical calculation, the cou-

pling coefficient in the separating section is about four

times as large as that in the tapered section with the same

slope. We can easily guess from this fact that the opti-

mum condition will be obtained at M = 2 or so. The

length Lz of subsection 11 can be determined as

h/2– LB tan 63
Lz =

tan Oz “
(32)

In the numerical calculations, all of the structural and

material parameters are assumed to be the same as those

in structure I. Mode-conversion losses to the radiation

modes are illustrated in Fig. 8, where the abscissas are

the total length L~ or the angle ratio M, and the ordi-

nates the normalized power of the radiation modes. The

solid lines indicate the radiation losses in structure II.

The dotted lines indicate those in the conventional

branching waveguide which has the same length and the

same branch separation as structure II. Therefore, the

slope of the conventional branching waveguide is given by

(30) ( h+d
@= tan-l

}2( L1+L2+L3) “
(33)
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Fig. 8. Variation in the radiation losses in the branching waveguides
shown in Figs. 1 and 7 as a function of the angle ratio M or total length
I,f of the structure, where (a) h/2= 0.625d and (b) h/2= 1.25d.

The half span of the branch separation is h/2=0 .625d

in Fig. 8(a) and h/2= 1.25d in Fig. 8(b). As a result, a

significant reduction of the radiation losses can be ex-

pected when the angle ratio M is larger than 2.5.
Fig. 9 shows the mode-conversion losses for the case of

M = 2.5 as a function of the half span of the branch

separation. The solid line indicates the radiation losses in

structure II, and the dotted line indicates those in the

conventional branching waveguide. It is found that the

radiation losses in the conventional structure are much

larger than those in the proposed branching waveguide

over the entire region of the abscissa shown in the figure.

.04
1

.03” “

.02” ‘

. 01””

I CONVENTIONAL
WAVEGUI DE

Ii /, STRUCTURE II
(M= 2.5)

h/2d

Fig. 9. Mode-conversion losses in the branching waveguides shown in

Figs. 1 and 7 as a function of the half span of the branching separation,
where M = 2.5 in structure II.

IV. CONCLUSIONS

Two low-loss branching waveguides consisting of

anisotropic materials are proposed and the characteristics

of mode conversion in these waveguides are numerically

analyzed by means of coupled-mode theory. The branch-

ing waveguides proposed here have two mode-conversion

sections on both input and output sides of conventional

symmetric branching waveguides. The analysis is devoted

to the TM mode since it exhibits interesting behavior

owing to mode conversion in oblique propagation which

cannot be observed in waveguides composed of isotropic

materials. Numerical results show that the branching

waveguides proposed in this paper incur much lower

mode-conversion losses than conventional branching

waveguides.
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