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Low-Loss Optical Branching Waveguides
Consisting of Anisotropic Materials
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Abstract —Low-loss branching waveguides of the mode-con-
version type consisting of anisotropic materials are proposed
and their basic wave-guiding characteristics are studied by
means of coupled-mode theory. Two mode-conversion sections
are introduced on both input and output sides of a conventional
symmetric branching waveguide. Each arm of the branching
waveguides is assumed to be a single-mode slab waveguide
except for the tapered section. A coupled-mode system of equa-
tions describing mode-conversion phenomena with respect to
the TM mode in the branching waveguides is derived from the
field expansion in terms of local normal modes. A
Runge—Kutta—Gill method is used to numerically solve the
coupled-mode equations. It is found that the branching wave-
guides proposed here suffer mode-conversion losses to a much
lesser extent than conventional branching waveguides.

I. INTRODUCTION

N optical network systems, lightwave modulators and

splitters /combiners will play important roles. Branch-
ing waveguides consisting of both isotropic and anisotropic
materials have been key elements for these guided wave
devices [1]-[4]. Their losses must be as low and their sizes
as small as possible, and they must also be simple to
fabricate. Some attempts have been made to reduce
mode-conversion losses in isotropic branching waveguides
[5]-[8]. To the authors’ knowledge, however, the same
subject for anisotropic cases has not been fully discussed
yet, in spite of the great significance from the device
design viewpoint [9], [10].

In this paper we propose low-loss branching wave-
guides of the mode-conversion type consisting of aniso-
tropic materials. Each arm, except for the tapered sec-
tion, is assumed to be a single-mode slab waveguide
composed of uniaxial crystalline materials. It is also as-
sumed that the optical axes, in both core and cladding,
are parallel to each other and lie in the plane defined by
the propagation direction and the normal of the wave-
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guide surface. Two mode-conversion sections are intro-
duced on the input and output sides of the separating
section in order to suppress unnecessary mode conver-
sion. Basic wave-guiding properties in the proposed struc-
tures are studied by means of coupled-mode theory. We
concentrate our discussion on the mode-conversion phe-
nomena among TM modes since it is the TM mode, in
this case, that shows interesting behavior which cannot be
observed in the isotropic case [11], [12]. A coupled-mode
system of equations describing the mode-conversion phe-
nomena is derived from the field expansion in terms of
local normal modes [13, pp. 106-111]. Numerical results,
obtained by the Runge—Kutta—Gill method, show that the
branching waveguides proposed in the present paper in-
cur mode-conversion losses that are much less than those
of conventional branching waveguides.

II. ANAaLYTICAL METHOD

A conventional symmetric branching waveguide com-
posed of a uniaxial crystalline material is shown together
with the Cartesian coordinate system used for the analysis
in Fig. 1. The whole structure is made up of two subsec-
tions along the z axis: a tapered section succeeding a
single slab waveguide and a separating section followed
by two parallel slab waveguides with a separation of A.
The width of the waveguide is d everywhere except for
the tapered section. The slope of both the tapered and
the separating section is 8; €, and e, are dielectric
tensors in the core and the cladding, respectively. The
functions f(z) and A(z) describe the geometrical shape
of the core boundaries.

There exist two types of local normal modes. One is
that supported by a three-layered slab waveguide in the
tapered section, and the other is that guided by a five-
layered slab waveguide in the separating section. The
waveguide structures supporting these local normal modes
are shown in Fig. 2. Suppose optical axes, in both core
and cladding, lie in the x—2z plane and are parallel to
each other. In the waveguide coordinate system, the di-
electric tensor s expressed as [11]

€pxx 0 €pxz
=1 0 & O (1)
€pox 0 €pzz
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Fig. 1. Conventional branching waveguide.
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Fig. 2. Waveguides supporting local normal modes: (a) three-layered
slab waveguide; (b) five-layered slab waveguide.
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where
€ =€ .cos’a+ e, sin*a
pxx pl p3
x5 (Ep3 -

€pz: = €1 SIN° @ + €,5C08% @

€pxz = €pz €,1)Sinacos a

(2)
In the above equations, €p1 and €,; are the principal
dielectric constants and « is the angle between the z axis
and the optical axis. The subscript p, signifying the re-
gion, represents r (core) or d (cladding).

€pyy T €p1-
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Marcuse [11] tells us that the propagation characteris-
tics of the eigenmodes in the waveguides shown in Fig. 2
do not change significantly through a slight variation in
the oblique angle a. For the sake of brevity in the analysis
we have chosen these waveguides for the local normal
modes. Therefore, the present analysis can be satisfacto-
rily applied to the case where the slopes of the functions
f(z) and h(z) are fairly gradual. For. a more precise
analysis, we should choose a different hypothetical wave-
guide, one in which the effects of sloping core boundaries
could be reflected properly.

We are now treating a weakly guiding structure with a
gentle taper and a small separation angle in which cou-
pling between the modes with positive real propagation
constants is significant. Thus the coupled-mode equations
with respect to the local normal modes can be expressed
as [13, pp. 106-111]

da (z)

#42- £ coceoli[locr-pioe]
+'/(‘) nd/EOdeXkOer(Z,p)ar(z’p)
.exp[jfoz{ﬁ,(z')—Br(z’,p)}dz’}d (3)

d
lzn) LCo(20)ai(2)
*€Xp [jfoz{ﬁr(z’,p) - B,.(z’)}dz’] (4)
where
Np = €pxx€pzz — Esxz (5)
_ [ M [Sdxx, 0 g2
”‘\/ezm( Zoki-a) ©

In the above equations, a,(z) and B,(z), where n=1 or j,
are the complex amplitude coefficient and propagation
constant of the guided mode labeled n; a,(z,p) and
B,(z,p) are those of the radiation mode with the trans-
Verse propagation constant p; and C,(2), C,(z,p), and

C,(z,p) are the coupling coefficients. The parameters €,
and k, are the dielectric constant and the wavenumber in
a vacuum, respectively. As mentioned above, (3) and (4)
are restricted to coupling between the modes with posi-
tive real propagation constants, excluding evanescent
modes and backward propagating modes. Coupling be-
tween radiation modes is also neglected in the derivation.
The coupling coefficient between the modes labeled m
and » is given by [13]

Con ™ BBy |

where E,, and E, are electric field vectors of the TM
modes, P is the power carried by the mode, o is the

(7
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radian frequency, and the asterisk indicates the complex
conjugate. The coupled modes in (7) may be either guided
modes or radiation modes. Following the mathematical
procedures in [13, pp. 116-121] under the condition that
the slopes of the tapered and separating sections are very
gradual, we obtain

wtan,

Con = 2503, — ) (L Ba)] e

[ F(Ep. E)] - sy} (8)
in the tapered section and

c - wtang,
" 4P(B,— B,)
'{[F(pr’qu)]x=f<z)+[F(pr’qu)]xrf(z)
- [F(EPX’EQZ)]X=IL(Z)_ [F(EPX’E‘IZ)]JC:—h(Z)}

%)
in the separating section, where
F(pr 4 qu)
€rxx * %
(6rxx - dex)meEnx + (erzz - edzz)fzsz'nz
€dxx
€rxz
+ €rxz lOg (Eij':xEnz + Er:zsznx) . (10)

dxz

In the above equations, 6, and 6, are the slopes of the
tapered and separating sections, respectively, and E,,
and E_, are the x and z components of E, and E,,
where p=m or n and g =m or n. The field components
should be evaluated right at the core boundaries inside
the core. Readers can refer to [11] for functional expres-
sions of guided modes in a three-layered slab waveguide.
Those of the other modes will not be given here because
the derivation for them, while quite straightforward, is
uninteresting.

III. PracTicaL DEesioNs FOrR Low-Loss OPTICAL
BrANCHING WAVEGUIDES

Two practical structures have been proposed to reduce
mode-conversion losses for branching waveguides com-
posed of isotropic materials [S]-[7]. Here we apply these
design considerations to those composed of anisotropic
materials, and estimate mode-conversion losses in the
branching waveguides. The coupled mode equations, (3)
and (4), are solved by means of the Runge-Kutta-Gill
method where the continuum of radiation modes with
real propagation constants is divided uniformly into 120
discrete modes in the p space and the step length in the z
direction is assumed to be Az = 0.25d in the actual com-
putations.

A. Theory of Mode Transducer [5]

First let us summarize the theory of the mode trans-
ducer for two-mode transmission systems. We consider

the cascade junction of two coupling regions A and B with
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Fig. 3. Cascade junction of coupling regions. With an optimal design
of A and B, an incident mode is converted to a designated normal mode
in B through the propagation in A.

different types of local normal modes as illustrated in F ig.
3. Both input and output waveguides support two modes
without any 'coupling between them. The normal modes in
region B are assumed to be the same as those in the
output waveguide. It is also assumed that reflected waves
are negligible at any place. The coupled-mode equation in
region A is given by

d [ay(z) _Ba Cifalz2)
dz ay)(2) "(Ca* Baz) a,(z)

where a,(z) and B,,, are the amplitude coefficient and
propagation constant of the normal mode labeled m, and
C, is the coupling coefficient. With the incident condition
[a0),a,(0)] at z =0, the solution of (11) at z = L, is
obtained as

|

Qll

L Y, L
al( 1) _—exp{f a 1}(Q
21

a)(L,)

le) ( a,(0)

Ay 42(0)) (1)

where

Oy =cosT, L, + jA,sin(T,L,) /T,

Oy, =03, =jC,sin(T,L,) / T,

Qp=cosT,L,—jA, sin(T,L,)/T,
Yo=(Bart Ba2)/2

L=y +]|C,?

Aazlﬁal_ﬁazl/z‘ (13)

On the other hand, the kth normal mode in region B can
be expressed as

(14)

with k =1 or 2. Here e,, and a,, are the kth eigenvector
and eigenvalue of the matrix

Bbl Cb
C, =
b (Cb* ﬁbz)

bi(z) = e, exp {jabk(z - Ll)}

(15)
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where B,, is the propagation constant of the normal
mode labeled m, and C, is the coupling coefficient. We
concentrate our discussion on a problem of power trans-
fer to the b; mode from the a, mode. The first eigenvalue
of (15) is given by

ap =Y, + 1 (16)
with
Ys = (Bo1 T Bp2) /2
I, =V AL +1C,1°
A, = lel—Bbzl/z (17)
and the associated eigenvector is expressed as
eb1=[1’(rb_Ab)/Cb]' (18)

For the complete transfer of power, we should require

by(L,) _ ( a,(L,)

1
by(Ly) az(Ll)) =a1(L1)((I‘b_Ab)/Cb)' (19)

Substituting (12) and (13) into (19) with the incident
condition a,(0)= 0 and equating both real and imaginary
parts of the resultant equation, we get

£a==(v[f35237-1)/éz (20)
L,=@N+D)m/(28,/1+¢2),  N=0,12,-
(21)
where
,=IC,l/A,, p=aorb. (22)

Structural parameters in the coupling regions A and B
can be determined by applying (20) and (21). In the case
of {, <1 and {, <1 with N =0, (20) and (21) reduce to

™

“=2A,

L (23)

(24)

[N

i -{a—:
&

B. Design Method I

Before we discuss low-loss branching waveguides, we
analyze mode-conversion phenomena in oblique propaga-
tion in the conventional branching waveguide shown in
Fig. 1. In the numerical calculations, it is assumed that
L, =178.645d, that 6 =1°, and that the waveguide is com-
posed of LiNbO, with the refractive indices /e, /€, =
2.272 and y/e 5 /€y = 2.187. The elements of the dielec-
tric tensors in both the core and the cladding region
satisfy the following relation:

€,;;=¢€4;(1+3), iorj=ux,y,orz (25)
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where 6 =0.0201. In addition, we define the normalized
frequency as

V= kOd\/nr(erxx - 6dxx)/GOGrzxx .

With V' chosen equal to 7 except for the tapered section,
only the lowest-order guided TM, mode, the incident
mode on the branching waveguide, can be supported. At
the output end of the tapered section, the waveguide
width is 2d. This means that the guided TM,; mode can
be excited halfway in the tapered section. Consequently
the guided TM, mode, guided TM,, even TM radiation,
and odd TM radiation modes exist in the structure as the
coupled modes. Fig. 4 shows the change of power of the
coupled modes as a function of oblique angle. The ordi-
nates represent the coupled mode power:

(26)

Pla,( Lf)l2 for guided modes

P, ={
¢ Pj(; Ud/EOdexk()'ar(Lf,p)'Z dp

for radiation modes
(27) -

which is normalized by the power of the incident mode. It
can be seen from Fig. 4 that mode conversion is strongest
between the incident mode and the even TM radiation
modes, and reaches its maximum value at o =0° The
characteristics of mode conversion to the odd modes, the
guided TM, and odd TM radiation modes, are illustrated
in Fig. 4(c). This type of coupling, which never occurs in
the isotropic case, is caused by the nondiagonal elements
of the dielectric tensor. The coupled power of the guided
TM, mode caused by mode conversion reaches its peak at
a =45°, where both ¢,,, and ¢,,, in (2) become maxi-
mum.

Taking these results into account, we concentrate our
discussion in the following on the case of a =0°, where
mode-conversion losses are most significant. The first
low-loss branching waveguide (structure I) is designed as
shown in Fig. 5. This is made up of four subsections: a
tapered section of slope 8, succeeding a single slab wave-
guide; a prong waveguide of slope 8,, as the first mode
converter; a main separating section of slope 6,,; and a
second mode converter composed of two slab waveguides
of slope 6,,. Two parallel slab waveguides with a separa-
tion of & follow the last subsection. The width of wave-
guide is assumed to be d everywhere except for the
tapered section. L,, L,;, and L,; are the lengths of
subsections I, II, and IV, respectively, and L, is the
overall length of the branching waveguide. Subsections 11
and IV correspond to coupling region A in Fig. 3, and
subsection III corresponds to coupling region B. The
tapered section, subsection I, has a constant slope in the
present paper because the radiation losses at the tapered
section are much less than those in a prong waveguide.
We apply the above-mentioned theory here to the guided
TM, mode and the radiation mode having the largest
coupling coefficient. Considering that the coupling coeffi-
cients are almost proportional to the slope of the wave-

X
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Fig. 4. Variation in the coupled-mode power caused by mode conver-
sion in the conventional branching waveguide as a function of oblique
angle, where 8 = 1° and L, =78.645d.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 7, JULY 1991

]
]
|
¥
I
I
i
i
|
]

— Lt = Lp2 Loa
[}

|
e L 2

Fig. 5. Branching waveguide of structure 1.

guide, the parameters of the structure in Fig. 5 are
determined to be [6], [7]

L _ au
e :BO(Lt) - Br(Lt’p)
a
Lb3

d L.+ L
L=—tp, - 200

d+h 2
8, =0y =0p3="0,, /2. (28)

In the above equations, By(L,) and B,(L ) are the propa-
gation constants of the guided TM, mode at z = L, and
L, and B(L,p) and B,(L;,p) are the constants of the
even TM radiation mode having the maximum coupling
coefficient with the former guided mode at z =L, and
L, respectively.

Power losses caused by mode conversion to the radia-
tion modes are illustrated in Fig. 6, where the abscissas
are the total length L, of the branching waveguide and
the ordinates the normalized power of the radiation
modes. The solid lines indicate the radiation losses in
structure I. The dotted lines indicate those in the conven-
tional branching waveguide which has the same length
and the same branch separation as structure I. The slope
of the conventional branching waveguide is given by

h+d
2L,

1

6 =tan~ . (29)

The half span of the branch separation is assumed as
h /2 =10.625d in Fig. 6(a) and % /2 = 1.25d in Fig. 6(b). It
is found from the figure that, in most regions of L s> the
characteristics of the mode-conversion losses in structure
I are superior to those in the conventional branching
waveguide. It is expected that the mode-conversion losses
can be drastically reduced by utilizing the branching
waveguide proposed here.
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Fig. 6. Variation in the radiation losses in the branching waveguides
shown in Figs. 1 and 5 as a function of the total length L, of the
structure, where (a) k& /2 = 0.625d and (b) h /2 =1.25d.

C. Design Method 11

The second branching waveguide (structure II) is shown
in Fig. 7. The whole structure is made up of three
subsections, that is, a tapered section of slope 8, succeed-
ing a single slab waveguide; a separating section of slope
8,; and two slab waveguides of slope 6, followed by two
parallel slab waveguides with a separation of 4. L, L,,
and L, are the lengths of subsections I, II, and III,
respectively. In this case, subsections I and III correspond
to regions A and B in Fig. 3, respectively. By means of
(23) and (24) the above parameters are determined to be

ar

L= g =B
o
L,

B BO(Lf) - Br(Lf9 P)

d
01=tan‘1(i) (30)
1
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Fig. 7. Branching waveguide of structure II.

where B,(0) and By(L,) are the propagation constants of
the guided TM, mode at z=0 and L, and B,(0, p) and
B,(L¢,p) are the constants of the even TM radiation
mode having the maximum coupling coefficient with the
former guided mode at z =0 and Ly, respectively. Since
the coupling coefficients between the guided TM, mode
and the even TM radiation modes are in proportion to
the slope of the waveguide, we define the following rela-
tion between the slopes as [6]

0,=0,/2=0,/2M (31)
where the parameter M is a positive constant called the
angle ratio that is introduced to optimize the mode trans-
ducer. According to the numerical calculation, the cou-
pling coefficient in the separating section is about four
times as large as that in the tapered section with the same
slope. We can easily guess from this fact that the opti-
mum condition will be obtained at M =2 or so. The
length L, of subsection II can be determined as

h,/2'_ Lgtan‘%
2= o

32
tan 6, (32)

In the numerical calculations, all of the structural and
material parameters are assumed to be the same as those
in structure I. Mode-conversion losses to the radiation
modes are illustrated in Fig. 8, where the abscissas are
the total length L, or the angle ratio M, and the ordi-
nates the normalized power of the radiation modes. The
solid lines indicate the radiation losses in structure II.
The dotted lines indicate those in the conventional
branching waveguide which has the same length and the
same branch separation as structure II. Therefore, the
slope of the conventional branching waveguide is given by

(33)

0=tan‘1{ htd }

2(L,+L,+ L)
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Fig. 8. Variation in the radiation losses in the branching waveguides
shown in Figs. 1 and 7 as a function of the angle ratio M or total length
L of the structure, where (a) /& /2 = 0.625d and (b) h /2 =1.25d.

The half span of the branch separation is # /2 = 0.625d
in Fig. 8(a) and h /2 =1.25d in Fig. 8(b). As a result, a
significant reduction of the radiation losses can be ex-
pected when the angle ratio M is larger than 2.5.

Fig. 9 shows the mode-conversion losses for the case of
M =25 as a function of the half span of the branch
separation. The solid line indicates the radiation losses in
structure II, and the dotted line indicates those in the
conventional branching waveguide. It is found that the
radiation losses in the conventional structure are much
larger than those in the proposed branching waveguide
over the entire region of the abscissa shown in the figure.
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Fig. 9. Mode-conversion losses in the branching waveguides shown in
Figs. 1 and 7 as a function of the half span of the branching separation,
where M = 2.5 in structure II.

I1V. CoNcLusIONS

Two low-loss branching waveguides consisting of
anisotropic materials are proposed and the characteristics
of mode conversion in these waveguides are numerically
analyzed by means of coupled-mode theory. The branch-
ing waveguides proposed here have two mode-conversion
sections on both input and output sides of conventional
symmetric branching waveguides. The analysis is devoted
to the TM mode since it exhibits interesting behavior
owing to mode conversion in oblique propagation which
cannot be observed in waveguides composed of isotropic
materials. Numerical results show that the branching
waveguides proposed in this paper incur much lower
mode-conversion losses than conventional branching
waveguides.
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